13397 measured reflections

 $R_{\rm int} = 0.032$

2223 independent reflections

2102 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[3]Ferrocenophan-1-one

Petr Štěpnička and Ivana Císařová*

Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic Correspondence e-mail: stepnic@natur.cuni.cz

Received 7 July 2008: accepted 21 July 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.096; data-to-parameter ratio = 16.3.

The crystal structure of [3] ferrocenophan-1-one, $[Fe(C_{13}-$ H₁₂O)], has been redetermined at 150 K. The tethered cyclopentadienyl (Cp) rings are tilted by 9.39 (18)° and assume an eclipsed conformation. The 1-oxopropane-1,3-diyl bridge has a pseudo-envelope conformation with the C=O group deviating by as much as $22.5 (2)^{\circ}$ from coplanarity with its attached Cp ring.

Related literature

For an overview of the chemistry of ferrocene, see: Štěpnička (2008). For the preparation of the title compound, see: Turbitt & Watts (1972). For its crystal structure at room temperature, see: Jones et al. (1965). For an introductory review on the chemistry of ferrocenophanes with carbon bridges, see: Heo & Lee (1999).

Experimental

Crystal data

,	
$[Fe(C_{13}H_{12}O)]$	$V = 966.07 (4) \text{ Å}^3$
$M_r = 240.08$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.77450 (10) Å	$\mu = 1.52 \text{ mm}^{-1}$
b = 7.3303 (2) Å	T = 150 (2) K
c = 22.8596 (6) Å	$0.38 \times 0.30 \times 0.28 \text{ mm}$
$\beta = 93.242 \ (2)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.579, T_{\max} = 0.660$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	136 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.31	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
2223 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON and publCIF (Westrip, 2008).

This work is a part of the long-term research project supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. MSM0021620857).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2366).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Heo, R. W. & Lee, T. R. (1999). J. Organomet. Chem. 578, 31-42.
- Jones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst. 19, 330-336.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.
- Turbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem. 46, 109-117. Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, m1061 [doi:10.1107/S1600536808022927]

[3]Ferrocenophan-1-one

P. Stepnicka and I. Císarová

Comment

The chemistry of ferrocene has received considerable attention because of its widespread applications ranging from material science to biomedicine. A particularly successful area is undoubtedly catalysis with ferrocene ligands (Štěpnička, 2008). A number of ferrocene ligands has been prepared a studied as ligands for transtion metal-mediated reactions. Among the numerous ligands reported to date, a specific class is constituted by the donors whose cyclopentadienyl (Cp) rings are interconnected with a linking group (*i.e.*, ferrocenophane-type compounds (Heo & Lee, 1999)). [3]ferrocenophan-1-one (I) represent a convenient entry to such donors (Štěpnička, 2008). Because the crystal structure of I has been reported already in the middle 1960's (Jones *et al.*, 1965), we have redetermined it at 150 K in order to obtain more precise structural information.

The molecular structure of I (Figure 1) is rather unexceptional as far as interatomic distances and angles concerns. Because of spatial constraints imposed by the 1-oxapropan-1,3-diyl linker, the Cp rings are tilted by 9.39 (18)° and adopt a near-to-eclipsed conformation characterized by the torsion angle C(1)—Cg(1)—Cg(2)—C(6) of -5.6 (2)°, where Cg(1) and Cg(2) are the centroids of the Cp rings C(1–5) and C(6–10), respectively. The iron—Cg distances in I are: Fe1—Cg(1) 1.6399 (14) Å and Fe1—Cg(2) 1.6463 (14) Å. The aliphatic bridge assumes a pseudoenvelope conformation and its C=O bond (C11—O 1.2012 (4) Å) is displaced above its bonding Cp ring, the angle subtended by the C?O vector and the Cp ring being 22.5 (2)°.

Experimental

The title compound was synthesized by acylation of ferrocene with acryloyl chloride in the presence of AlCl₃ (Turbitt & Watts, 1972) and characterized by ¹H and ¹³C{¹H} NMR spectra. Orange-red crystals suitable for X-ray diffraction analysis were obtained by liquid-phase diffusion of hexane into a solution of the compound in dichloromethane.

Refinement

All H-atoms were included in calculated positions and refined with d(C-H) = 0.93 Å (aromatic) and 0.97 Å (methylene) and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Side (*a*) and top (*b*) views of I showing the atom numbering scheme and displacement ellipsoids for the non-H atoms at the 30% probability level.

[3]ferrocenophan-1-one

Crystal data	
$[Fe(C_{13}H_{12}O)]$	$F_{000} = 496$
$M_r = 240.08$	$D_{\rm x} = 1.651 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2391 reflections
<i>a</i> = 5.77450 (10) Å	$\theta = 0.4 - 27.5^{\circ}$
<i>b</i> = 7.3303 (2) Å	$\mu = 1.52 \text{ mm}^{-1}$
c = 22.8596 (6) Å	T = 150 (2) K
$\beta = 93.242 \ (2)^{\circ}$	Block, orange-red
$V = 966.07 (4) \text{ Å}^3$	$0.38 \times 0.30 \times 0.28 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2223 independent reflections
Radiation source: fine-focus sealed tube	2102 reflections with $I > 2\sigma(I)$
Monochromator: horizontal graphite crystal	$R_{\rm int} = 0.032$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 150(2) K	$\theta_{\min} = 1.8^{\circ}$
ω and π scans to fill the Ewald sphere	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$k = -9 \rightarrow 9$
$T_{\min} = 0.579, T_{\max} = 0.660$	$l = -29 \rightarrow 29$
13397 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.038$
$wR(F^2) = 0.096$
<i>S</i> = 1.31
2223 reflections
136 parameters
Primary atom site location: structure-inva methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 2.5298P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$

ariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	0.18818 (7)	0.12608 (6)	0.151598 (17)	0.01753 (13)
01	0.6106 (4)	0.4906 (4)	0.09480 (11)	0.0324 (5)
C1	0.3394 (5)	0.3716 (4)	0.15759 (12)	0.0187 (5)
C2	0.1123 (5)	0.3776 (4)	0.18047 (12)	0.0206 (6)
H2	-0.0117	0.4491	0.1664	0.025*
C3	0.1121 (6)	0.2545 (4)	0.22849 (13)	0.0246 (6)
Н3	-0.0127	0.2324	0.2515	0.029*
C4	0.3337 (6)	0.1708 (4)	0.23551 (13)	0.0263 (7)
H4	0.3781	0.0837	0.2635	0.032*
C5	0.4752 (5)	0.2428 (4)	0.19256 (13)	0.0226 (6)
Н5	0.6293	0.2122	0.1877	0.027*
C6	0.1582 (5)	0.0986 (4)	0.06275 (12)	0.0212 (6)
C7	-0.0636 (5)	0.0829 (4)	0.08711 (13)	0.0228 (6)
H7	-0.1912	0.1573	0.0782	0.027*
C8	-0.0570 (5)	-0.0656 (4)	0.12733 (14)	0.0242 (6)
H8	-0.1786	-0.1044	0.1493	0.029*
C9	0.1688 (6)	-0.1445 (4)	0.12808 (14)	0.0255 (6)
Н9	0.2211	-0.2434	0.1506	0.031*
C10	0.3001 (5)	-0.0440 (4)	0.08799 (13)	0.0240 (6)
H10	0.4530	-0.0675	0.0796	0.029*
C11	0.4118 (5)	0.4452 (4)	0.10113 (13)	0.0209 (6)
C12	0.2345 (6)	0.4393 (4)	0.04970 (13)	0.0238 (6)
H12A	0.2733	0.5291	0.0206	0.029*
H12B	0.0819	0.4680	0.0628	0.029*
C13	0.2334 (6)	0.2466 (4)	0.02244 (13)	0.0250 (6)
H13A	0.1303	0.2467	-0.0126	0.030*
H13B	0.3882	0.2189	0.0107	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displacement	parameters	$(Å^2)$
			/

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0204 (2)	0.0150 (2)	0.0171 (2)	0.00020 (17)	-0.00002 (14)	-0.00078 (16)

supplementary materials

01	0.0253 (11)	0.0364 (14)	0.0359 (13)	-0.0055 (10)	0.0037 (9)	0.0061 (11)
C1	0.0220 (13)	0.0145 (12)	0.0194 (13)	-0.0010 (11)	-0.0012 (10)	-0.0025 (11)
C2	0.0256 (14)	0.0172 (13)	0.0189 (13)	0.0012 (12)	0.0003 (11)	-0.0038 (11)
C3	0.0315 (16)	0.0269 (16)	0.0155 (13)	-0.0018 (13)	0.0037 (11)	-0.0037 (12)
C4	0.0352 (17)	0.0240 (15)	0.0189 (14)	-0.0010 (13)	-0.0057 (12)	0.0010 (12)
C5	0.0225 (14)	0.0201 (14)	0.0242 (14)	-0.0009 (12)	-0.0066 (11)	-0.0020 (12)
C6	0.0270 (15)	0.0193 (14)	0.0172 (13)	-0.0014 (12)	-0.0002 (11)	-0.0049 (11)
C7	0.0229 (14)	0.0241 (15)	0.0210 (14)	-0.0026 (12)	-0.0032 (11)	-0.0039 (11)
C8	0.0260 (15)	0.0204 (14)	0.0263 (15)	-0.0068 (12)	0.0016 (12)	-0.0038 (12)
C9	0.0358 (17)	0.0123 (13)	0.0284 (15)	-0.0008 (12)	0.0008 (13)	-0.0013 (12)
C10	0.0268 (15)	0.0198 (14)	0.0258 (15)	0.0018 (12)	0.0051 (12)	-0.0057 (12)
C11	0.0255 (15)	0.0132 (13)	0.0241 (14)	-0.0009 (11)	0.0016 (11)	0.0003 (11)
C12	0.0294 (16)	0.0217 (14)	0.0199 (14)	-0.0035 (12)	-0.0011 (12)	0.0042 (12)
C13	0.0335 (16)	0.0252 (15)	0.0164 (13)	-0.0027 (13)	0.0036 (12)	-0.0028 (12)

Geometric parameters (Å, °)

Fe1—C1	2.002 (3)	C4—H4	0.9300
Fe1—C2	2.015 (3)	С5—Н5	0.9300
Fe1—C7	2.036 (3)	C6—C10	1.430 (4)
Fe1—C6	2.039 (3)	C6—C7	1.430 (4)
Fe1—C5	2.045 (3)	C6—C13	1.503 (4)
Fe1—C10	2.048 (3)	C7—C8	1.424 (4)
Fe1—C8	2.049 (3)	С7—Н7	0.9300
Fe1—C9	2.056 (3)	C8—C9	1.425 (4)
Fe1—C3	2.063 (3)	С8—Н8	0.9300
Fe1—C4	2.076 (3)	C9—C10	1.427 (4)
O1—C11	1.212 (4)	С9—Н9	0.9300
C1—C2	1.440 (4)	С10—Н10	0.9300
C1—C5	1.441 (4)	C11—C12	1.515 (4)
C1—C11	1.480 (4)	C12—C13	1.544 (4)
C2—C3	1.421 (4)	C12—H12A	0.9700
С2—Н2	0.9300	C12—H12B	0.9700
C3—C4	1.420 (5)	С13—Н13А	0.9700
С3—Н3	0.9300	С13—Н13В	0.9700
C4—C5	1.415 (4)		
C1—Fe1—C2	42.00 (12)	С4—С3—Н3	125.6
C1—Fe1—C7	118.70 (12)	С2—С3—Н3	125.6
C2—Fe1—C7	102.70 (12)	Fe1—C3—H3	127.7
C1—Fe1—C6	99.73 (12)	C5—C4—C3	108.2 (3)
C2—Fe1—C6	114.13 (12)	C5-C4-Fe1	68.73 (17)
C7—Fe1—C6	41.09 (12)	C3—C4—Fe1	69.44 (17)
C1—Fe1—C5	41.70 (11)	С5—С4—Н4	125.9
C2—Fe1—C5	69.68 (12)	С3—С4—Н4	125.9
C7—Fe1—C5	157.51 (13)	Fe1—C4—H4	127.5
C6—Fe1—C5	121.23 (12)	C4—C5—C1	108.2 (3)
C1—Fe1—C10	116.24 (12)	C4—C5—Fe1	71.13 (17)
C2—Fe1—C10	150.81 (12)	C1—C5—Fe1	67.56 (16)
C7—Fe1—C10	68.43 (12)	С4—С5—Н5	125.9

C6—Fe1—C10	40.96 (12)	С1—С5—Н5	125.9
C5—Fe1—C10	107.44 (13)	Fe1—C5—H5	126.9
C1—Fe1—C8	158.01 (12)	C10—C6—C7	106.8 (3)
C2—Fe1—C8	123.82 (13)	C10—C6—C13	126.6 (3)
C7—Fe1—C8	40.80 (12)	C7—C6—C13	126.4 (3)
C6—Fe1—C8	69.15 (12)	C10-C6-Fe1	69.86 (16)
C5—Fe1—C8	160.19 (13)	C7—C6—Fe1	69.36 (16)
C10—Fe1—C8	68.35 (13)	C13—C6—Fe1	121.9 (2)
C1—Fe1—C9	154.45 (13)	C8—C7—C6	108.7 (3)
C2—Fe1—C9	163.46 (13)	C8—C7—Fe1	70.09 (17)
C7—Fe1—C9	68.57 (13)	C6—C7—Fe1	69.55 (16)
C6—Fe1—C9	69.15 (12)	С8—С7—Н7	125.6
C5—Fe1—C9	123.64 (13)	С6—С7—Н7	125.6
C10—Fe1—C9	40.68 (12)	Fe1—C7—H7	126.3
C8—Fe1—C9	40.64 (13)	C7—C8—C9	108.0 (3)
C1—Fe1—C3	69.18 (12)	C7—C8—Fe1	69.11 (17)
C2—Fe1—C3	40.77 (12)	C9—C8—Fe1	69.95 (17)
C7—Fe1—C3	120.66 (13)	С7—С8—Н8	126.0
C6—Fe1—C3	152.09 (12)	С9—С8—Н8	126.0
C5—Fe1—C3	67.99 (13)	Fe1—C8—H8	126.5
C10—Fe1—C3	166.86 (13)	C8—C9—C10	107.6 (3)
C8—Fe1—C3	111.49 (13)	C8—C9—Fe1	69.41 (17)
C9—Fe1—C3	130.67 (13)	C10-C9-Fe1	69.35 (17)
C1—Fe1—C4	69.06 (12)	С8—С9—Н9	126.2
C2—Fe1—C4	68.71 (12)	С10—С9—Н9	126.2
C7—Fe1—C4	158.22 (13)	Fe1—C9—H9	126.6
C6—Fe1—C4	160.60 (13)	C9—C10—C6	108.9 (3)
C5—Fe1—C4	40.15 (12)	C9—C10—Fe1	69.97 (17)
C10—Fe1—C4	128.66 (13)	C6-C10-Fe1	69.17 (16)
C8—Fe1—C4	126.57 (13)	С9—С10—Н10	125.6
C9—Fe1—C4	114.02 (13)	C6—C10—H10	125.6
C3—Fe1—C4	40.13 (13)	Fe1—C10—H10	126.9
C2—C1—C5	107.3 (3)	O1-C11-C1	121.3 (3)
C2—C1—C11	127.8 (3)	O1—C11—C12	121.2 (3)
C5—C1—C11	123.4 (3)	C1—C11—C12	117.0 (3)
C2-C1-Fe1	69.48 (17)	C11—C12—C13	109.1 (3)
C5-C1-Fe1	70.74 (17)	C11-C12-H12A	109.9
C11—C1—Fe1	114.28 (19)	C13—C12—H12A	109.9
C3—C2—C1	107.6 (3)	C11—C12—H12B	109.9
C3—C2—Fe1	71.43 (18)	C13—C12—H12B	109.9
C1—C2—Fe1	68.51 (17)	H12A—C12—H12B	108.3
С3—С2—Н2	126.2	C6—C13—C12	114.1 (2)
C1—C2—H2	126.2	C6—C13—H13A	108.7
Fe1—C2—H2	125.4	C12—C13—H13A	108.7
C4—C3—C2	108.7 (3)	С6—С13—Н13В	108.7
C4—C3—Fe1	70.44 (17)	C12—C13—H13B	108.7
C2—C3—Fe1	67.80 (16)	H13A—C13—H13B	107.6

